f — Linear Algebra folrdc

nag_complex_apply_q (f01rdc)

1. Purpose
nag_complex_apply_q (f01rdc) performs one of the transformations
B:=QB or B:=Q"B,
where B is an m by ncolb complex matrix and @ is an m by m unitary matrix, given as the product
of Householder transformation matrices.

This function is intended for use following nag_complex_qr (f0lrcc).

2. Specification

#include <nag.h>
#include <nagfO1.h>

void nag_complex_apply_q(MatrixTranspose trans, Nag_WhereElements wheret,
Integer m, Integer n, Complex al], Integer tda, Complex thetal],
Integer ncolb, Complex b[], Integer tdb, NagError *fail)

3. Description

The unitary matrix) is assumed to be given by

Q=(Q,Qn_1---Q)",

Q). being given in the form

I o
%0 1)

where

T,=1- ’Yk“kukH

w= (%)

7, is a scalar for which Re v, = 1.0, ¢, is a real scalar and z;, is an (m — k) element vector.

z;, must be supplied in the (k — 1)th column of a in elements a[k][k —1],...,a[m — 1][k — 1] and 6,
given by

0, = (Cka Im’)’k),

must be supplied either in a[k — 1][k — 1] or in theta[k — 1], depending upon the parameter wheret.

To obtain @ explicitly B may be set to I and premultiplied by . This is more efficient than
obtaining Q. Alternatively, nag_complex_form_q (f0lrec) may be used to obtain @ overwritten on
A.

4. Parameters

trans
Input: the operation to be performed as follows:
trans = NoTranspose, perform the operation B := QB.
trans = ConjugateTranspose, perform the operation B := Q¥ B.
Constraint: trans must be one of NoTranspose or ConjugateTranspose.

wheret
Input: the elements of 6 are to be found as follows:
wheret = Nag_ElementsIn The elements of 6 are in A.
wheret = Nag_ElementsSeparate The elements of 6 are separate from A, in theta.
Constraint: wheret must be one of Nag_ElementsIn or Nag_ElementsSeparate.

[NP3275/5/pdf] 3.f01rdc. 1

nag_complex_apply_q NAG C Library Manual

Input: m, the number of rows of A.
Constraint: m > n.

Input: n, the number of columns of A.
When n = 0 then an immediate return is effected.
Constraint: n > 0.

a[m][tda]
Input: the leading m by n strictly lower triangular part of the array a must contain details
of the matrix). In addition, when wheret = Nag_ElementsIn, then the diagonal elements of
a must contain the elements of 6 as described under the parameter theta below.
When wheret = Nag_ElementsSeparate, then the diagonal elements of the array a are
referenced, since they are used temporarily to store the (), but they contain their original
values on return.

tda
Input: the second dimension of the array a as declared in the function from which
nag_complex_apply_q is called.
Constraint: tda > n.

thetaln]
Input: with wheret = Nag_ElementsSeparate, the array theta must contain the elements of
6. If theta[k — 1] = 0.0 then T}, is assumed to be I; if theta[k — 1] = «, with Re a < 0.0, then
T, is assumed to be of the form

a 0

otherwise theta[k — 1] is assumed to contain 6, given by 6, = ({,,Im~,).
When wheret = Nag_ElementsIn, the array theta is not referenced, and may be set to the
null pointer, i.e., (Complex *)0.

ncolb
Input: ncolb, the number of columns of B.
When ncolb = 0 then an immediate return is effected.
Constraint: ncolb > 0.

b[m][tdb]
Input: the leading m by ncolb part of the array b must contain the matrix to be transformed.
Output: b is overwritten by the transformed matrix.

tdb
Input: the second dimension of the array b as declared in the function from which
nag_complex_apply_q is called.
Constraint: tdb > ncolb.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_BAD PARAM
On entry, parameter trans had an illegal value.
On entry, parameter wheret had an illegal value.

NE_2 INT_ARG_LT
On entry, m = (value) while n = (value). These parameters must satisfy m > n.
On entry, tda = (value) while n = (value). These parameters must satisfy tda > n.
On entry, tdb = (value)while ncolb = (value). These parameters must satisfy tdb > ncolb.

NE_INT_ARG_LT
On entry, n must not be less than 0: n = (value).
On entry, ncolb must not be less than 0: ncolb = (value).

3.f01rdc.2 [NP3275/5/pdf]

f — Linear Algebra folrdc

6.1.

6.2.

8.1.

NE_ALLOC_FAIL
Memory allocation failed.

Further Comments
The approximate number of real floating-point operations is given by 8n(2m — n)ncolb.
Accuracy

Letting C denote the computed matrix Q¥ B, C satisfies the relation
QC=B+FE

where || E|| < ce||BJ|, € being the machine precision, ¢ is a modest function of m and ||.|| denotes
the spectral (two) norm. An equivalent result holds for the computed matrix @ B. See also Section
6.1 of nag_complex_qr (f0lrcc).

References

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Clarendon Press, Oxford.

See Also

nag-complex_form_q (f0lrec)
nag_complex_qr (f0lrcc)

Example

To obtain the matrix Q¥ B for the matrix B given by

—0.55 + 1.05¢ 0.45 + 1.05¢

0.49 + 0.93¢ 1.09+0.13:

B = 0.56 — 0.16¢ 0.64 + 0.16¢
0.39+0.23¢ —0.39 —0.23¢
1.134+0.83: —1.1340.77¢

following the QR factorization of the 5 by 3 matrix A given by

0.5¢ —0.5+4+1.5¢ —1.0+41.0¢
0.440.31 0.9+ 1.3: 0.2+ 1.4:

A=1]04 —0.4+0.4¢ 1.8
0.3 -0.4: 0.140.7¢ 0.0
—0.3¢ 0.3+0.3¢ 2.4q

Program Text

/* nag_complex_apply_q(fOlrdc) Example Program
*

* Copyright 1990 Numerical Algorithms Group.
*

* Mark 1, 1990.

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagfO1.h>

#define MMAX 20

#define NMAX 10

#define NCBMAX 5

#define TDA NMAX

#define TDB NCBMAX

#define COMPLEX(A) A.re, A.im

[NP3275/5/pdf] 3.f01rdc.3

nag_complex_apply_q NAG C Library Manual

main()

{

Integer i, j, m, n, ncolb;
Complex a[MMAX] [TDA], b[MMAX][TDB], theta[NMAX];
static NagError fail;

Vprintf ("fO0lrdc Example Program Results\n");
/* Skip heading in data file */
Vscanf ("%*["\n]");
Vscanf ("%1d%1d", &m, &n);
if (m>MMAX || n>NMAX)
{
Viprintf(stderr,"\n m or n is out of range.\n");
Viprintf (stderr,"m = %1d n = %1d", m, n);
exit (EXIT_FAILURE);
}
for (i=0; i<m; ++i)
for (j=0; j<m; ++j)
Vscanf (" (%1f , %1f) ", COMPLEX(&a[il[j1));
Vscanf ("%1d4d", &ncolb);
if (ncolb>NCBMAX)
{
Vprintf ("\n ncolb is out of range.\n ncolb = %1d\n", ncolb);
exit (EXIT_FAILURE);
}
for (i=0; i<m; ++i)
for (j=0; j<ncolb; ++j)
Vscanf (" (%1f , %1f) ", COMPLEX(&b[il[j1));
/* Find the QR factorization of A. */
fail.print = TRUE;
fOlrcc(m, n, (Complex *)a, (Integer)TDA, theta, &fail);

/* Form conjg(Q’)*B. */

fO0lrdc(ConjugateTranspose, Nag_ElementsSeparate, m, n, (Complex *)a, (Integer)
theta, ncolb, (Complex *)b, (Integer)TDB, &fail);

if (fail.code != NE_NOERROR)

exit (EXIT_FAILURE);
Vprintf ("\nMatrix conjg(Q’)*B\n");
for (i=0; i<m; ++i)

{

for (j=0; j<ncolb; ++j)
Vprintf (" (%7.4f, %8.4f)%s", COMPLEX(b[i]l[j1),
(J%2==1 || j==n_1) ? "\Il" .on ||);

}

exit (EXIT_SUCCESS);

8.2. Program Data

f0lrdc Example Program Data

5 3
(0.00, 0.50) (-0.50, 1.50) (-1.00, 1.00)
(0.40, 0.30) (0.90, 1.30) (0.20, 1.40)
(0.40, 0.00) (-0.40, 0.40) (1.80, 0.00)
(0.30, -0.40) (0.10, 0.70) (0.00, 0.00)
(0.00, -0.30) (0.30, 0.30) (0.00, 2.40)
2
(-0.55, 1.05) (0.45, 1.05)
(0.49, 0.93) (1.09, 0.13)
(0.56, -0.16) (0.64, 0.16)
(0.39, 0.23) (-0.39, -0.23)
(1.13, 0.83) (-1.13, 0.77)

3.f01rdc.4 [NP3275/5/pdf]

f — Linear Algebra folrdc

8.3. Program Results
f0lrdc Example Program Results

Matrix conjg(Q’)*B
(1.0000, 1.0000) (1.0000, -1.0000)
(-1.0000, 0.0000) (-1.0000, 0.0000)
(-1.0000, 1.0000) (-1.0000, -1.0000)
(-0.0600, -0.0200) (-0.0400, 0.1200)
(0.0400, 0.1200) (-0.0600, 0.0200)

[NP3275/5/pdf] 3.f01rdc.5

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

